Home | Members | Research | Publications | Internat. Conf. | Access | Links | Seminars | Lab Life |
174. H.Y. Teah*, Q. Zhang, K. Yasui, and S. Noda*,
"Life cycle assessment of lithium-sulfur batteries with carbon nanotube hosts: Insights from lab experiments,"
Sustain. Prod. Consum. 48, 280-288 (2024).
DOI:10.1016/j.spc.2024.05.022 (open accecss)
173. K. Yoshida, S. Noda*, and N. Hanada*,
"Heat supply to and hydrogen desorption from magnesium hydride in a thermally insulated container with hot gas flow,"
Chem. Eng. J. 491, 152070 (2024).
DOI:10.1016/j.cej.2024.152070 (open accecss)
172. R. Raudsepp, K.-K. Turk, E. Zarmehri, U. Joost, P. Rauwel, R. Saar, U. Maeorg, A. Dyck, M. Bron, Z. Chen, S. Noda, I. Kruusenberg*, and K. Tammeveski,
"Boronand fluorine co-doped graphene/few-walled carbon nanotube composite as highly active electrocatalyst for oxygen reduction reaction,"
ChemNanoMat, in press.
DOI:10.1002/cnma.202300546
171. S. Anantharaj* and S. Noda,
"Prior oxidation of Ni substrates increases the number of active sites in Ni3S2 obtained by sulfidation and enhances its multifunctional electrocatalytic activity,"
J. Mater. Chem. A 12, 5793-5804 (2024).
DOI:10.1039/D3TA07513C
170. T. Mae, K. Kaneko, H. Sakurai, and S. Noda*,
"A stable full cell having high energy density realized by using a three-dimensional current collector of carbon nanotubes and partial prelithiation of silicon monoxide,"
Carbon 218, 118663 (2024).
DOI:10.1016/j.carbon.2023.118663
169. S. Anantharaj*, M. Li, R. Arulraj, K. Eswaran, S. F. CM, R. Murugesan, A. Maruthapillai, and S. Noda,
"A tri-functional self-supported electrocatalyst featuring mostly NiTeO3 perovskite for H2 production via methanol-water co-electrolysis,"
Chem. Commun. 59, 12755-12758 (2023).
DOI:10.1039/D3CC02568C
168. S. Anantharaj*, P.JJ. Sagayaraj, M.S. Yesupatham, R. Arulraj, K. Eswaran, K. Sekar, and S. Noda,
"The reference electrode dilemma in energy conversion electrocatalysis: "Right vs okay vs wrong","
J. Mater. Chem. A 11, 17699-17709 (2023).
DOI:10.1039/D3TA03145D
167. S. Anantharaj* and S. Noda,
"Electrochemical dealloying-assisted activity enhancement: The next big thing in water electrosplitting!"
Nano Energy 114, 108624 (2023) (review).
DOI:10.1016/j.nanoen.2023.108624
166. Y. Kuwahara, F. Nasrin, M. Tabuchi, H. Kataura, R. Yuge, S. Noda, and T. Saito*,
"Prompt and effective purification for thin single wall carbon nanotubes by dry process using ferric chloride,"
Carbon 213, 118207 (2023).
DOI:10.1016/j.carbon.2023.118207
165. H. Tanaka, T. Goto, K. Hamada, K. Ohashi, T. Osawa, H. Sugime, and S. Noda*,
"Safe and damage-less dry-purification of carbon nanotubes using FeCl3 vapor,"
Carbon 212, 118171 (2023).
DOI:10.1016/j.carbon.2023.118171 (Open Access)
164. T. Mae, K. Kaneko, M. Li, and S. Noda*,
"Stable and high-capacity SiO negative electrode held in reversibly deformable sponge-like matrix of carbon nanotubes,"
Carbon 209, 118014 (2023).
DOI:10.1016/j.carbon.2023.118014 (Open Access)
163. K. Kaneko, M. Li, and S. Noda*,
"Appropriate properties of carbon nanotubes for the three-dimensional current collector in lithium-ion batteries,"
Carbon Trends 10, 100245 (2023).
DOI:10.1016/j.cartre.2022.100245 (Open Access)
162. S. Anantharaj* and S. Noda,
"The importance of carefully choosing vertex potentials in hydrogen underpotential deposition,"
Mater. Today Energy 32, 101234 (2023).
DOI:10.1016/j.mtener.2022.101234
161. S. Anantharaj*, P. E. Karthik, and S. Noda,
"Ambiguities and best practices in the determination of active sites and real surface area of monometallic electrocatalytic interfaces,"
J. Colloid Interface Sci., 634, 169-175 (2023).
DOI:10.1016/j.jcis.2022.12.040
160. K. Lee, M.J. Lee, J. Lim, K. Ryu, M. Li, S. Noda, S.J. Kwon*, and S.W. Lee*,
"Controlled Nitrogen Doping in Crumpled Graphene for Improved Alkali Metal-Ion Storage under Low-Temperature Conditions,"
Adv. Funct. Mater. 33 (2), 2209775 (2023).
DOI:10.1002/adfm.202209775
159. S. Munakata, S. Kobayashi, H. Sugime, S. Konishi, J. Shiomi, and S. Noda*,
"Ag nanoparticle-based aerogel-like films for interfacial thermal management,"
ACS Appl. Nano Mater. 5 (10), 15755-15761 (2022).
DOI:10.1021/acsanm.2c03903
158. S. Anantharaj* and S. Noda,
"How properly are we interpreting the Tafel lines in energy conversion electrocatalysis?"
Mater. Today Energy 29, 101123 (2022) (perspective).
DOI:10.1016/j.mtener.2022.101123
157. S. Anantharaj* and S. Noda,
"Dos and don’ts in screening water splitting electrocatalysts,"
Energy Adv. 1 511-523 (2022) (perspective).
DOI:10.1039/D2YA00076H
156. S. Anantharaj* and S. Noda,
"iR drop correction in electrocatalysis: Everything one needs to know!"
J. Mater. Chem. A 10 (17), 9348-9354 (2022).
DOI:10.1039/D2TA01393B
155. S. Anantharaj* and S. Noda,
"Layered 2D PtX2 (X= S, Se, Te) for electrocatalytic HER in comparison with Mo/WX2 and Pt/C: Are we missing the bigger picture?"
Energy Environ. Sci. 15, 1461-1478 (2022) (perspective).
DOI:10.1039/D1EE03516A
154. N. Akagi, K. Hori, H. Sugime, S. Noda, and N. Hanada*,
"Systematic investigation of anode catalysts for liquid ammonia electrolysis,"
J. Catal. 406, 222-230 (2022).
DOI:10.1016/j.jcat.2022.01.005
153. S. Anantharaj*, S. Kundu, and S. Noda,
"Worrisome exaggeration of activity of electrocatalysts destined for steady-state water electrolysis by polarization curves from transient techniques,"
J. Electrochem. Soc. 169, 014508 (2022).
DOI:10.1149/1945-7111/ac47ec
Press releases in Japanese and in English
152. S. Anantharaj*, T. Nagamatsu, S. Yamaoka, M. Li, and S. Noda*,
"Efficient methanol electrooxidation catalyzed by potentiostatically grown Cu-O/OH(Ni) nanowires: Role of inherent Ni impurity,"
ACS Appl. Energy Mater. 5(1), 419-429 (2022).
DOI:10.1021/acsaem.1c02943
151. S. Anantharaj*, H. Sugime, and S. Noda*,
"Why shouldn’t double-layer capacitance (Cdl) be always trusted to justify Faradaic electrocatalytic activity differences?"
J. Electroanal. Chem. 903, 115842 (2021).
DOI:10.1016/j.jelechem.2021.115842
150. K. Kajiwara, H. Sugime, S. Noda, N. Hanada*,
"Fast and stable hydrogen storage in the porous composite of MgH2 with Nb2O5 catalyst and carbon nanotube,"
J. Alloys Compd. 893, 162206 (2022).
DOI:10.1016/j.jallcom.2021.162206
149. M. Li*, K. Yasui, H. Sugime, and S. Noda*,
"Enhanced CO2-assisted growth of single-wall carbon nanotube arrays using Fe/AlOx catalyst annealed without CO2,"
Carbon 185, 264-271 (2021).
DOI:10.1016/j.carbon.2021.09.031 (open accecss)
148. S. Anantharaj*, P.E. Karthik, and S. Noda,
"The significances of properly reporting turnover frequency in electrocatalysis research,"
Angew. Chem. Int. Ed. 60, 2-19 (2021) (viewpoint).
DOI:10.1002/anie.202110352 (open accecss)
147. X. Huang, E. Hara, H. Sugime, and S. Noda*,
"Carbon nanotube/silicon heterojunction solar cell with an active area of 4 cm2 realized using a multifunctional molybdenum oxide layer,"
Carbon 185, 215-223 (2021).
DOI:10.1016/j.carbon.2021.08.056 (open access)
146. D.Y. Kim*, J.H. Kim, M. Li, S. Noda, J. Kim, K.-S. Kim, K.S. Kim, and C.-M. Yang*,
"Controllable pore structures of pure and sub-millimeter-long carbon nanotubes,"
Appl. Surf. Sci. 566, 150751 (2021).
DOI:10.1016/j.apsusc.2021.150751 (open access)
145. Y. Yoshie, K. Hori, T. Mae, and S. Noda*,
"High-energy-density Li-S battery with positive electrode of lithium polysulfides held by carbon nanotube sponge,"
Carbon 182, 32-41 (2021).
DOI:10.1016/j.carbon.2021.05.046 (open access)
144. M. Li*, S. Hachiya, Z. Chen, T. Osawa, H. Sugime, and S. Noda*,
"Fluidized-bed production of 0.3 mm-long single-wall carbon nanotubes at 28% carbon yield with 0.1 mass% catalyst impurities using ethylene and carbon dioxide,"
Carbon 182, 23-31 (2021).
DOI:10.1016/j.carbon.2021.05.035 (open access)
143. K. Yoshida, K. Kajiwara, H. Sugime, S. Noda*, and N. Hanada*,
"Numerical simulation of heat supply and hydrogen desorption by hydrogen flow to porous MgH2 sheet,"
Chem. Eng. J. 421 129648 (2021).
DOI:10.1016/j.cej.2021.129648 (open access)
142. S. Anantharaj*, S. Noda*, M. Driess, and P. Menezes*,
"The pitfall of using potentiodynamic polarization curves for Tafel analysis in electrocatalytic water splitting,"
ACS Energy Lett. 6 (4), 1607-1611 (viewpoint).
DOI:10.1021/acsenergylett.1c00608 (open access)
141. B. Lee*, K. Lee, M. Li, S. Noda, and S. W. Lee*,
"Two-dimensional polydopamine positive electrode for high-capacity alkali metal-ion storage,"
ChemElectroChem 8, 1070-1077 (2021).
DOI:10.1002/celc.202100033
140. J.H. Cha, K. Hasegawa, J. Lee, I. Y. Stein, A. Miura, S. Noda, J. Shiomi, S. Chiashi*, B.L. Wardle*, and S. Maruyama*,
"Thermal properties of single-walled carbon nanotube forests with various volume fractions,"
Int. J. Heat and Mass Transfer 171, 121076 (2021).
DOI:10.1016/j.ijheatmasstransfer.2021.121076
139. S. Anantharaj*, S. Noda*, V. R. Jothi, S.C. Yi*, M. Driess*, and P. W. Menezes*,
"Strategies and perspectives to catch the missing pieces in energy-efficient hydrogen evolution reaction in alkaline media,"
Angew. Chem. Int. Ed. 60, 18981-19006 (2021) (review).
DOI:10.1002/anie.202015738 (open access)
138. M. J. Lee, K. Lee, J. Lim, M. Li, S. Noda, S. J. Kwon, B. DeMattia, B. Lee,* and S. W. Lee,*
"Outstanding low-temperature performance of structure-controlled graphene anode based on surface-controlled charge storage mechanism,"
Adv. Funct. Mater. 31 (14), 2009397 (2021).
DOI:10.1002/adfm.202009397
137. S. Anantharaj*, H. Sugime, S. Yamaoka, S. Noda*,
"Pushing the limits of rapid anodic growth of CuO/Cu(OH)2 nanoneedles on Cu for methanol oxidation reaction: Anodization pH is the game changer,"
ACS Appl. Energy Mater. 4 (1) 899-912 (2021).
DOI:10.1021/acsaem.0c02822
136. R. Xie, H. Sugime, and S. Noda*,
"High-performance solution-based silicon heterojunction solar cells using carbon nanotube with polymeric acid doping,"
Carbon 175, 519-524 (2021).
DOI:10.1016/j.carbon.2020.12.056
135. X. Huang, R. Xie, H. Sugime, and S. Noda*,
"Performance enhancement of carbon nanotube/silicon solar cell by solution processable MoOx,"
Appl. Surf. Sci. 542, 148682 (2021).
DOI:10.1016/j.apsusc.2020.148682
134. S. Anantharaj*, S. Pitchaimuthu*, and S. Noda*,
"A review on recent developments in electrochemical hydrogen peroxide synthesis with a critical assessment of perspectives and strategies,"
Adv. Colloid Interface Sci. 287, 102331 (2021) (review).
DOI:10.1016/j.cis.2020.102331
133. S. Anantharaj*, H. Sugime, and S. Noda*,
"Chemical leaching of inactive Cr and subsequent electrochemical resurfacing of catalytically active sites in stainless steel for high-rate alkaline hydrogen evolution reaction,"
ACS Appl. Energy Mater. 3 (12), 12596-12606 (2020).
DOI:10.1021/acsaem.0c02505
132. H. Sugime*, T. Sato, R. Nakagawa, T. Hayashi, Y. Inoue, S. Noda,
"Ultra-long carbon nanotube forest via in situ supplements of iron and aluminum vapor sources,"
Carbon 172, 772-780 (2021).
DOI:10.1016/j.carbon.2020.10.066
131. S. Anantharaj*, S. Kundu*, and S. Noda*,
""The Fe effect": A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts,"
Nano Energy 80, 105514 (2021) (review).
DOI:10.1016/j.nanoen.2020.105514 (open access)
130. S. Anantharaj*, H. Sugime, and S. Noda*,
"Surface amorphized nickel hydroxy sulphide for efficient hydrogen evolution reaction in alkaline medium,"
Chem. Eng. J. 408, 127275 (2021).
DOI:10.1016/j.cej.2020.127275 (open access)
129. S. Anantharaj*, H. Sugime, B. Chen, N. Akagi, and S. Noda*,
"Boosting the oxygen evolution activity of copper foam containing trace Ni by intentionally supplementing Fe and forming nanowires in anodization,"
Electrochim. Acta 364, 137170 (2020).
DOI:10.1016/j.electacta.2020.137170
128. K. Kaneko, K. Hori, and S. Noda*,
"Nanotubes make battery lighter and safer,"
Carbon 167, 596-600 (2020).
DOI:10.1016/j.carbon.2020.06.042
127. M. Li*, M. Risa, T. Osawa, H. Sugime, and S. Noda*,
"Facile catalyst deposition using mist for fluidized-bed production of sub-millimeter-long carbon nanotubes,"
Carbon 167, 256-263 (2020).
DOI:10.1016/j.carbon.2020.06.018
126. S. Anantharaj*, H. Sugime, and S. Noda*,
"Ultrafast growth of Cu(OH)2-CuO nanoneedle array on Cu foil for methanol oxidation electrocatalysis,"
ACS Appl. Mater. Interfaces 12 (24), 27327-27338 (2020).
DOI:10.1021/acsami.0c08979
125. M. Kim, B. Lee, M. Li, S. Noda, C. Kim, J. Kim, W.-J. Song, S.W. Lee*, and O. Brand*,
"All-soft supercapacitors based on liquid metal electrodes with integrated functionalized carbon nanotubes,"
ACS Nano 14 (5), 5659-5667 (2020).
DOI:10.1021/acsnano.0c00129
124. S. Anantharaj* and S. Noda,
"Appropriate use of electrochemical impedance spectroscopy in water splitting electrocatalysis,"
ChemElectroChem 7 (10), 2297-2308 (2020).
Top Cited Article 2020-2021
DOI:10.1002/celc.202000515
123. S. Anantharaj*, H. Sugime, B. Chen, N. Akagi, S. Noda*,
"Achieving increased electrochemical accessibility and lowered OER activation energy for Co2+ sites with a simple anion pre-oxidation,"
J. Phys. Chem. C 124 (18), 9673-9684 (2020).
DOI:10.1021/acs.jpcc.0c00178
122. S. Anantharaj* and S. Noda*,
"Nickel selenides as pre-catalysts for electrochemical oxygen evolution reaction: A review,"
Int. J. Hydrogen Energy 45, 15763-15784 (2020) (review).
DOI:10.1016/j.ijhydene.2020.04.073
121. T. Liu, K.-C. Kim, B. Lee, S. Jin, M. Lee, M. Li, S. Noda, S. S. Jang*, and S. W. Lee*,
"Enhanced lithium storage of an organic cathode via the bipolar mechanism,"
ACS Appl. Energy Mater. 3 (4), 3728-3735 (2020).
DOI:10.1021/acsaem.0c00187
120. R. Xie, H. Sugime, and S. Noda*,
"Dispersing and doping carbon nanotubes by poly(p-styrene-sulfonic acid) for high-performance and stable transparent conductive films,"
Carbon 164, 150-156 (2020).
DOI:10.1016/j.carbon.2020.03.063
119. N. Hanada*, Y. Kohase, K. Hori, H. Sugime, and S. Noda,
"Electrolysis of ammonia in aqueous solution by platinum nanoparticles supported on carbon nanotube film electrode,"
Electrochim. Acta 341, 136027 (2020).
DOI:10.1016/j.electacta.2020.136027
118. S. Anantharaj*, S. Kundu*, and S. Noda*,
"Progress in nickel chalcogenides electrocatalyzed hydrogen evolution reaction,"
J. Mater. Chem. A 8, 4174-4192 (2020) (review) (open access).
DOI:10.1039/C9TA14037A
117. K. Hori, Y. Yamada, T. Momma, and S. Noda*,
"High-energy density LixSi-S full cell based on 3D current collector of few-wall carbon nanotube sponge,"
Carbon 161, 612-621 (2020).
DOI:10.1016/j.carbon.2020.02.004
116. H.Y. Teah*, T. Sato, K. Namiki, M. Asaka, K. Feng, and S. Noda*,
"Life cycle greenhouse gas emissions of long and pure carbon nanotube synthesized via on-substrate and fluidized-bed chemical vapor deposition,"
ACS Sustainable Chem. Eng. 8 (4), 1730-1740 (2020).
DOI:10.1021/acssuschemeng.9b04542
115. S. Anantharaj* and S. Noda*,
"Amorphous catalysts and electrochemical water splitting: An untold story of harmony,"
Small 16, 1905779 (2020) (review).
DOI:10.1002/smll.201905779
114. H. Sugime*, T. Sato, R. Nakagawa, C. Cepek, and S. Noda,
"Gd-enhanced growth of multi-millimeter-tall forests of single-wall carbon nanotubes,"
ACS Nano 13 (11), 13208-13216 (2019).
DOI:10.1021/acsnano.9b06181
113. Y. S. Lee, S.-Y. Lee, K. S. Kim, S. Noda, S. E. Shim*, and C.-M. Yang*,
"Effective heat transfer pathways of thermally conductive networks formed by one-dimensional carbon materials with different sizes,"
Polymers 11 (10), 1661 (2019).
DOI:10.3390/polym11101661
112. R. Xie, N. Ishijima, H. Sugime, and S. Noda*,
"Enhancing the photovoltaic performance of hybrid heterojunction solar cells by passivation of silicon surface via a simple 1-min annealing process,"
Sci. Rep. 9, 12051 (2019).
DOI:10.1038/s41598-019-48504-7
111. D. D. Tune, H. Shirae, V. Lami, R. Headrick, M. Pasquali, Y. Vaynzof, S. Noda, E. Hobbie*, and B. Flavel*,
"Stability of chemically doped nanotube-silicon heterojunction solar cells: Role of oxides at the carbon-silicon interface,"
ACS Appl. Energy Mater. 2 (8), 5925-5932 (2019).
DOI:10.1021/acsaem.9b01050
110. D. Akagi, Y. Kageshima, Y. Hashizume, S. Aoi, Y. Sasaki, H. Kaneko, T. Higashi, T. Hisatomi, M. Katayama, T. Minegishi, S. Noda, and K. Domen*,
"A semi-transparent nitride photoanode responsive up to 600 nm based on a carbon nanotube thin film electrode,"
ChemPhotoChem 3, 521-524 (2019).
DOI:10.1002/cptc.201900061
109. S. Akiba, M. Kosaka, K. Ohashi, K. Hasegawa, H. Sugime, and S. Noda*,
"Direct formation of continuous multilayer graphene films with controllable thickness on dielectric substrates,"
Thin Solid Films 675, 136-142 (2019).
DOI:10.1016/j.tsf.2019.02.035
108. Y. Nagai, H. Sugime, and S. Noda*,
"1.5 Minute-synthesis of continuous graphene films by chemical vapor deposition on Cu foils rolled in three dimensions,"
Chem. Eng. Sci. 201, 319-324 (2019)
(Featured cover article).
DOI:10.1016/j.ces.2019.02.038
107. K. Hori, K. Hasegawa, T. Momma, and S. Noda*,
"Volumetric discharge capacity 1 Ah cm-3 realized by sulfur in carbon nanotube sponge cathodes,"
J. Phys. Chem. C 123 (7), 3951-3958 (2019).
DOI:10.1021/acs.jpcc.8b10009
106. R. Rao,* C.L. Pint, A.E. Islam, R.S. Weatherup, S. Hofmann, E.R. Meshot, F. Wu, C. Zhou, N. Dee, P.B. Amama, J. Carpena-Nunez, W. Shi, D.L. Plata, E.S. Penev, B.I. Yakobson, P.B. Balbuena, C. Bichara, D.N. Futaba, S. Noda, H. Shin, K.S. Kim, B. Simard, F. Mirri, M. Pasquali, F. Fornasiero, E.I. Kauppinen, M. Arnold, B.A. Cola, P. Nikolaev, S. Arepalli , H.-M. Cheng, D.N. Zakharov, E.A. Stach, J. Zhang, F. Wei, M. Terrones, D.B. Geohegan, B. Maruyama, S. Maruyama, Y. Li, W.W. Adams, and A.J. Hart,
"Carbon nanotubes and related nanomaterials: critical advances and challenges for synthesis towards mainstream commercial applications,"
ACS Nano 12 (12), 11756-11784 (2018).
DOI:10.1021/acsnano.8b06511
105. B. Liang, E. Yi, T. Sato, S. Noda*, K. Sun, D. Jia, Y. Zhou, and R. M. Laine,*
"Resettable heterogeneous catalyst: (re)generation and (re)adsorption of Ni nanoparticles for repeated synthesis of carbon nanotubes on Ni-Al-O thin films,"
ACS Appl. Nano Mater. 1, 5483-5492 (2018).
DOI:10.1021/acsanm.8b00847
104. H. Sugime,* T. Ushiyama, K. Nishimura, Y. Ohno, and S. Noda,
"An interdigitated electrode with dense carbon nanotube forests on conductive supports for electrochemical biosensors,"
Analyst 143, 3635-3642 (2018).
DOI:10.1039/C8AN00528A (open access)
103. S. Okada, H. Sugime, K. Hasegawa, T. Osawa, S. Kataoka, H. Sugiura, and S. Noda*,
"Flame-assisted chemical vapor deposition for continuous gas-phase synthesis of 1-nm-diameter single-wall carbon nanotubes,"
Carbon 138, 1-7 (2018).
DOI:10.1016/j.carbon.2018.05.060 (open access)
102. T. Sato, H. Sugime, and S. Noda*,
"CO2-assisted growth of millimeter-tall single-wall carbon nanotube arrays and its advantage against H2O for large-scale and uniform synthesis,"
Carbon 136, 143-149 (2018).
DOI:10.1016/j.carbon.2018.04.060 (open access)
101. K. Hasegawa*, C. Takazawa, M. Fujita, S. Noda, and M. Ihara*,
"Critical effect of nanometer-size surface roughness of a porous Si seed layer on the defect density of epitaxial Si films for solar cells by rapid vapor deposition,"
CrystEngComm 20 (13), 1774-1778 (2018) (inside front cover).
DOI:10.1039/c7ce02162c
100. T. Liu, B. Lee, M. J. Lee, J. Park, Z. Chen, S. Noda, and S. W. Lee*,
"Improved capacity of redox-active functional carbon cathodes by dimension reduction for hybrid supercapacitors,"
J. Mater. Chem. A 6 (8), 3367-3375 (2018).
DOI:10.1039/C7TA10881H
99. S. Miura, Y. Yoshihara, M. Asaka, K. Hasegawa, H. Sugime, A. Ota, H. Oshima, and S. Noda*,
"Millimeter-tall carbon nanotube arrays grown on aluminum substrates,"
Carbon 130, 834-842 (2018).
DOI:10.1016/j.carbon.2018.01.075
98. Y. H. Kwon, J. J. Park, L. M. Housel, K. Minnici, G. Zhang, S. R. Lee, S. W. Lee, Z. Chen, S. Noda, E. S. Takeuchi, K. J. Takeuchi, A. C. Marschilok*, and E. Reichmanis*,
"Carbon nanotube web with carboxylated polythiophene �½gassist�½h for high-performance battery electrodes,"
ACS Nano 12 (4), 3126-3139 (2018).
DOI:10.1021/acsnano.7b08918
97. L. Cui*, Y. Xue, S. Noda, and Z Chen*,
"Self-supporting S@GO-FWCNTs composite films as positive electrodes for high-performance lithium-sulfur batteries,"
RSC Adv. 8, 2260-2266 (2018).
DOI:10.1039/C7RA10498G (open access)
96. T. Kowase, K. Hori, K. Hasegawa, T. Momma, S. Noda*,
"A-few-second synthesis of silicon nanoparticles by gas-evaporation and their self-supporting electrodes based on carbon nanotube matrix for lithium secondary battery anodes,"
J. Power Sources 363, 450-459 (2017).
DOI:10.1016/j.jpowsour.2017.07.115
95. Y. Nagai, A. Okawa, T. Minamide, K. Hasegawa, H. Sugime, and S. Noda*,
"Ten-second epitaxy of Cu on repeatedly used sapphire for practical production of high-quality graphene,"
ACS Omega 2 (7), 3354-3362 (2017).
DOI:10.1021/acsomega.7b00509 (open access)
94. C. Takazawa, M. Fujita, K. Hasegawa, A. Lukianov, X. Zhang, S. Noda, and M. Ihara*,
"Nano-scale smoothing of double layer porous Si substrates for detaching and fabricating low cost, high efficiency monocrystalline thin film Si solar cell by zone heating recrystallization,"
ECS Trans. 75 (31), 11-23 (2017).
DOI:10.1149/07531.0011ecst
93. K. Funahashi, N. Tanaka, Y. Shoji*, N. Imazu, K. Nakayama, K. Kanahashi, H. Shirae, S. Noda, H. Ohta, T. Fukushima*, and T. Takenobu*,
"Highly air- and moisture-stable hole-doped carbon nanotube films achieved using a boron-based oxidant,"
Appl. Phys. Express 10, 035101-1-4 (2017).
DOI:10.7567/APEX.10.035101
92. H. Shirae, K. Hasegawa, H. Sugime, E. Yi, R. M. Laine, and S. Noda*,
"Catalyst nucleation and carbon nanotube growth from flame-synthesized Co-Al-O nanopowders at ten-second time scale,"
Carbon 114, 31-38 (2017).
DOI:10.1016/j.carbon.2016.11.075
91. T. Liu, K.C. Kim, B. Lee, Z. Chen, S. Noda, S.S. Jang, and S.W. Lee*,
"Self-polymerized dopamine as an organic cathode for Li- and Na-ion batteries,"
Energy Envron. Sci. 10, 205-215 (2017).
DOI:10.1039/C6EE02641A (open access)
90. E. Muramoto, Y. Yamasaki, F. Wang, K. Hasegawa, K. Matsuda, and S. Noda*,
"Carbon nanotube-silicon heterojunction solar cells with surface-textured Si and solution-processed carbon nanotube films,"
RSC Adv. 6 (96), 93575-93581 (2016).
DOI:10.1039/C6RA16132D (open access)
89. B. Lee, C. Lee, T. Liu, K. Eom, Z. Chen, S. Noda, T.F. Fuller, H.D. Jang,* and S.W. Lee*
"Hierarchical networks of redox-active reduced crumpled graphene oxide and functionalized few-walled carbon nanotubes for rapid electrochemical energy storage,"
Nanoscale 8 (24), 12330-12338 (2016).
DOI:10.1039/C6NR02013E (open access)
88. K. Hasegawa and S. Noda*,
"Lithium ion batteries made of electrodes with 99 wt% active materials and 1 wt% carbon nanotubes without binder or metal foils,"
J. Power Sources 321, 155-162 (2016).
DOI:10.1016/j.jpowsour.2016.04.130
87. M. Narubayashi, Z. Chen, K. Hasegawa, and S. Noda*,
"50-100-�½�½m-thick pseudocapacitive electrodes of MnO2 nanoparticles uniformly electrodeposited in carbon nanotube papers,"
RSC Adv. 6 (47), 41496-41505 (2016).
DOI:10.1039/C6RA06433G (open access)
86. Y. Yamasaki, K. Hasegawa, T. Osawa, and S. Noda*,
"Rapid vapour deposition and in situ melt crystallization for 1-min fabrication of 10-�½�½m-thick crystalline silicon films with a lateral grain size of over 100 �½�½m,"
CrystEngComm 18 (19), 3404-3410 (2016).
DOI:10.1039/C6CE00122J (open access)
85. T. Liu, R. Kavian, Z. Chen, S.S. Cruz, S. Noda, and S.W. Lee*,
"Biomass-derived carbonaceous positive electrodes for sustainable lithium-ion storage,"
Nanoscale 8(6), 3671-3677 (2016).
DOI:10.1039/C5NR07064C (open access)
84. T. Tsujimura*, T. Hakii, and S. Noda,
"A color-tunable polychromatic organic-light-emitting-diode device with low resistive intermediate electrode for roll-to-roll manufacturing,"
IEEE Trans. Electron Devices 63 (1), 402-407 (2016).
DOI:10.1109/TED.2015.2502257
Selected for 2016 EDS Paul Rappaport Award.
83. N. Na, K. Hasegawa, X. Zhou, M. Nihei, and S. Noda*,
"Denser and taller carbon nanotube arrays on Cu foils useable as thermal interface materials,"
Jpn. J. Appl. Phys. 54 (9), 095102-1-7 (2015).
DOI:10.7567/JJAP.54.095102
82. J. C. Bachman, R. Kavian, D. J. Graham, D.Y. Kim, S. Noda, D. G. Nocera*, Y. Shao-Horn*, and S.W. Lee*,
"Electrochemical polymerization of pyrene derivatives on functionalized carbon nanotubes for pseudocapacitive electrodes,"
Nat. Commun. 6, 7040-1-9 (2015).
DOI:10.1038/ncomms8040 (open access)
81. H. Shirae, D.Y. Kim, K. Hasegawa, T. Takenobu, Y. Ohno, and S. Noda*,
"Overcoming the quality-quantity tradeoff in dispersion and printing of carbon nanotubes by a repetitive dispersion-extraction process,"
Carbon 91, 20-29 (2015).
DOI:10.1016/j.carbon.2015.04.033
80. J. Lee, K. Hasegawa, T. Momma, T. Osaka, S. Noda*,
"One-minute deposition of micrometre-thick porous Si-Cu anodes with compositional gradients on Cu current collectors for lithium secondary batteries,"
J. Power Sources 286, 540-550 (2015).
DOI:10.1016/j.jpowsour.2015.04.024
79. R. Quintero, D.Y. Kim, K. Hasegawa, Y. Yamada, A. Yamada, and S. Noda*,
"Important factors for effective use of carbon nanotube matrices in electrochemical capacitor hybrid electrodes without binding additives,"
RSC Adv. 5 (21), 16101-16111 (2015).
DOI:10.1039/C4RA16560H (open access)
78. J. Lee and S. Noda*,
"One-minute deposition of micrometre-thick porous Si anodes for lithium ion batteries,"
RSC Adv. 5 (4), 2938-2946 (2015).
DOI:10.1039/C4RA11681J
77. M. Kosaka, S. Takano, K. Hasegawa, and S. Noda*,
"Direct synthesis of few- and multi-layer graphene films on dielectric substrates by "etching-precipitation" method,"
Carbon 82, 254-263 (2015).
DOI:10.1016/j.carbon.2014.10.069
76. N. Na, D.Y.Kim, Y.-G. So, Y. Ikuhara, and S. Noda*,
"Simple and engineered process yielding carbon nanotube arrays with 1.2�½~1013 cm-2 wall density on conductive underlayer at 400 �½�½C,"
Carbon 81, 773-781 (2015).
DOI:10.1016/j.carbon.2014.10.023
75. Z. Chen, D.Y. Kim, K. Hasegawa, T. Osawa, and S. Noda*,
"Over 99.6 wt%-pure, sub-millimeter-long carbon nanotubes realized by fluidized-bed with careful control of the catalyst and carbon feeds,"
Carbon 80, 339-350 (2014).
DOI:10.1016/j.carbon.2014.08.072
74. N. Fukaya, D.Y. Kim, S. Kishimoto, S. Noda, and Y. Ohno*,
"One-step sub-10 �½�½m patterning of carbon-nanotube thin films for transparent conductor applications,"
ACS Nano 8 (4), 3285-3293 (2014).
DOI:10.1021/nn4041975
73. R. Quintero, D.Y. Kim, K. Hasegawa, Y. Yamada, A. Yamada, and S. Noda*,
"Carbon nanotube 3D current collectors for lightweight, high performance and low cost supercapacitor electrodes,"
RSC Adv. 4 (16), 8230-8237 (2014).
DOI:10.1039/C3RA47517D (open access)
72. Z. Chen, D.Y. Kim, K. Hasegawa, and S. Noda*,
"Methane-assisted chemical vapor deposition yielding millimeter-tall single-wall carbon nanotubes of smaller diameter,"
ACS Nano 7 (8),6719-6728 (2013).
DOI:10.1021/nn401556t
71. T.W.H. Oates*, M. Losurdo, S. Noda, and K. Hinrichs,
"The effect of atmospheric tarnishing on the optical and structural properties of silver nanoparticles,"
J. Phys. D: Appl. Phys. 46 (14), 145308-1-6 (2013).
DOI:10.1088/0022-3727/46/14/145308
70. H. Sugime and S. Noda*,
"Cold-gas chemical vapor deposition to identify the key precursor for rapidly growing vertically-aligned single-wall and few-wall carbon nanotubes from pyrolyzed ethanol,"
Carbon 50 (8), 2953-2960 (2012).
DOI:10.1016/j.carbon.2012.02.065
69. K. Sekiguchi, K. Furuichi, Y. Shiratori, and S. Noda*,
"One second growth of carbon nanotube arrays on a glass substrate by pulsed-current heating,"
Carbon 50 (6), 2110-2118 (2012).
DOI:10.1016/j.carbon.2011.12.062
68. S.W. Lee, B. M. Gallant, Y. Lee, N. Yoshida, D.Y. Kim, Y. Yamada, S. Noda, A. Yamada, and Y. Shao-Horn*,
"Self-standing positive electrodes of oxidized few-walled carbon nanotubes for light-weight and high-power lithium batteries,"
Energy Environ. Sci. 5 (1), 5437-5444 (2012).
DOI:10.1039/c1ee02409d
67. S. Isogai, R. Ohnishi, M. Katayama, J. Kubota, D.Y. Kim, S. Noda, D. Cha, K. Takanabe, and K. Domen*,
"Composite of TiN nanoparticles and few-walled carbon nanotubes and its application for electrocatalytic oxygen reduction reaction,"
Chem. Asian J.
7 (2), 286-289 (2012).
DOI:10.1002/asia.201100715
66. D.Y. Kim, H. Sugime, K. Hasegawa, T. Osawa, and S. Noda*,
"Fluidized-bed synthesis of sub-millimeter-long single walled carbon nanotube arrays,"
Carbon 50 (4), 1538-1545 (2012).
DOI:10.1016/j.carbon.2011.11.032
65. T. Moteki, Y. Murakami, S. Noda, S. Maruyama, and T. Okubo*,
"Zeolite surface as a catalyst support material for synthesis of single-walled carbon nanotubes,"
J. Phys. Chem. C 115 (49), 24231-24237 (2011).
DOI:10.1021/jp207930m
64. Y. Shiratori, K. Furuichi, Y. Tsuji, H. Sugime, and S. Noda*,
"Tailoring the morphology of carbon nanotube assemblies using microgradients in the catalyst thickness,"
Jpn. J. Appl. Phys. 50 (9), 095101-1-7 (2011).
DOI:10.1143/JJAP.50.095101
63. K. Hasegawa and S. Noda*,
"Moderating carbon supply and suppressing Ostwald ripening of catalyst particles to produce 4.5-mm-tall single-walled carbon nanotube forests,"
Carbon 49 (13), 4497-4504 (2011).
DOI:10.1016/j.carbon.2011.06.061
62. T. Yamamoto, S. Noda, and M. Kato*,
"A simple and fast method to disperse long single-walled carbon nanotubes introducing few defects,"
Carbon 49 (10), 3179-3183 (2011).
DOI:10.1016/j.carbon.2011.03.040
61. Y. Tsuji*, S. Noda, and S. Nakamura,
"Nanostructure and magnetic properties of c-axis oriented L10-FePt nanoparticles and nanocrystalline films on polycrystalline TiN underlayers,"
J. Vac. Sci. Technol. B 29 (3), 031801-1-10 (2011).
DOI:10.1116/1.3575155
60. D.Y. Kim, H. Sugime, K. Hasegawa, T. Osawa, and S. Noda*,
"Sub-millimeter-long carbon nanotubes repeatedly grown on and separated from ceramic beads in a single fluidized bed reactor,"
Carbon 49(6), 1972-1979 (2011).
DOI:10.1016/j.carbon.2011.01.022
59. K. Hasegawa and S. Noda*,
"Millimeter-tall single-walled carbon nanotubes rapidly grown with and without water,"
ACS Nano 5(2), 975-984 (2011).
DOI:10.1021/nn102380j
58. K. Hasegawa and S. Noda*,
"Real-time monitoring of millimeter-tall vertically aligned single-walled carbon nanotube growth on combinatorial catalyst library,"
Jpn. J. Appl. Phys. 49 (8), 085104-1-6 (2010).
DOI:10.1143/JJAP.49.085104
57. Y. Shiratori* and S. Noda,
"Combinatorial evaluation for field emission properties of carbon nanotubes part II - high growth rate system,"
J. Phys. Chem. C 114 (30), 12938-12947 (2010).
DOI:10.1021/jp103378c
56. Yukie Tsuji, Yoshiko Tsuji*, S. Nakamura, and S. Noda,
"Two routes to polycrystalline CoSi2 thin films by co-sputtering Co and Si,"
Appl. Surf. Sci. 256 (23), 7118-7124 (2010).
DOI:10.1016/j.apsusc.2010.05.037
55. K. Hasegawa and S. Noda*,
"Diameter increase in millimeter-tall vertically aligned single-walled carbon nanotubes during growth,"
Appl. Phys. Express 3 (4), 045103-1-3 (2010).
DOI:10.1143/APEX.3.045103
54. H. Sugime and S. Noda*,
"Millimeter-tall single-walled carbon nanotube forests grown from ethanol,"
Carbon 48 (8), 2203-2211 (2010).
DOI:10.1016/j.carbon.2010.02.024
53. S. Noda*, H. Sugime, K. Hasegawa, K. Kakehi, and Y. Shiratori,
"A simple combinatorial method aiding research on single-walled carbon nanotube growth on substrates,"
Jpn. J. Appl. Phys. 49 (2), 02BA02-1-7 (2010).
DOI:10.1143/JJAP.49.02BA02
JSAP Spotlights, Editors' Choice.
52. Y. Shiratori*, K. Furuichi, Y. Tsuji, H. Sugime, and S. Noda*,
"Efficient field emission from triode-type 1D arrays of carbon nanotubes,"
Nanotechnology 20 (47), 475707-1-7 (2009).
DOI:10.1088/0957-4484/20/47/475707
51. T.W.H. Oates*, Y. Shiratori, and S. Noda,
"Two-dimensional combinatorial investigation of Raman and fluorescence enhancement in silver and gold sandwich substrates,"
J. Phys. Chem. C 113 (22), 9588-9594 (2009).
DOI:10.1021/jp900436a
50. T.W.H. Oates*, H. Sugime, and S. Noda,
"Combinatorial surface-enhanced Raman spectroscopy and spectroscopic ellipsometry of silver island films,"
J. Phys. Chem. C 113 (12), 4820-4828 (2009).
DOI:10.1021/jp8097654
49. T.W.H. Oates* and S. Noda,
"Thickness-gradient dependent Raman enhancement in silver island films,"
Appl. Phys. Lett. 94 (5), 053106-1-3 (2009).
DOI:10.1063/1.3078272
48. H. Sugime, S. Noda*, S. Maruyama, and Y. Yamaguchi,
"Multiple "optimum" conditions for Co-Mo catalyzed growth of vertically aligned single-walled carbon nanotube forests,"
Carbon 47 (1), 234-241 (2009).
DOI:10.1016/j.carbon.2008.10.001
47. Y. Yamaguchi*, S. Noda, and H. Komiyama,
"Chemical engineering for technology innovation,"
Chem. Eng. Commun. 196 (1), 267-276 (2009).
DOI:10.1080/00986440802290029
46. Y. Shiratori, H. Sugime, and S. Noda*,
"Combinatorial evaluation for field emission properties of carbon nanotubes,"
J. Phys. Chem. C 112 (46), 17974-17982 (2008).
DOI:10.1021/jp807078h
45. K. Hasegawa, S. Noda*, H. Sugime, K. Kakehi, S. Maruyama, and Y. Yamaguchi,
"Growth window and possible mechanism of millimeter-thick single-walled carbon nanotube forests,"
J. Nanosci. Nanotechnol. 8 (11), 6123-6128 (2008).
DOI:10.1166/jnn.2008.SW17
44. K. Kakehi, S. Noda*, S. Maruyama, and Y. Yamaguchi,
"Individuals, grasses, and forests of single- and multi-walled carbon nanotubes grown by supported Co catalysts of different nominal thicknesses,"
Appl. Surf. Sci. 254 (21), 6710-6714 (2008).
DOI:10.1016/j.apsusc.2008.04.050
43. T.W.H. Oates*, A. Keller, S. Noda, and S. Facsko,
"Self-organized metallic nanoparticle and nanowire arrays from ion-sputtered silicon templates,"
Appl. Phys. Lett. 93 (6), 063106-1-3 (2008).
DOI:10.1063/1.2959080
42. Shiratori, K. Furuichi, S. Noda*, H. Sugime, Y. Tsuji, Z. Zhang, S. Maruyama, and Y. Yamaguchi,
"Field emission properties of single-walled carbon nanotubes with a variety of emitter-morphologies,"
Jpn. J. Appl. Phys. 47 (6), 4780-4787 (2008).
DOI:10.1143/JJAP.47.4780
41. K. Kakehi, S. Noda*, S. Maruyama, and Y. Yamaguchi,
"Growth valley dividing single- and multi-walled carbon nanotubes: combinatorial study of nominal thickness of Co catalyst,"
Jpn. J. Appl. Phys. 47 (4), 1961-1965 (2008).
DOI:10.1143/JJAP.47.1961
40. Y. Tsuji, M. Mizukami, and S. Noda*,
"Growth mechanism of epitaxial CoSi2 on Si and reactive deposition epitaxy of double heteroepitaxial Si/CoSi2/Si,"
Thin Solid Films 516 (12), 3989-3995 (2008).
DOI:10.1016/j.tsf.2007.08.002
39. Y. Tsuji*, S. Noda, and Y. Yamaguchi,
"Structure and magnetic property of c-axis oriented L10-FePt nanoparticles on TiN/a-Si underlayers,"
J. Vac. Sci. Technol. B 25 (6), 1892-1895 (2007).
DOI:10.1116/1.2803726
38. Y. Tsuji*, S. Nakamura, and S. Noda,
"Spontaneous formation of Si nanocones vertically aligned to Si wafers,"
J. Vac. Sci. Technol. B 25 (3), 808-812 (2007).
DOI:10.1116/1.2734976
37. S. Noda*, K. Hasegawa, H. Sugime, K. Kakehi, Z. Zhang, S. Maruyama, and Y. Yamaguchi,
"Millimeter-thick single-walled carbon nanotube forests: hidden role of catalyst support,"
Jpn. J. Appl. Phys. 46 (17), L399-L401 (2007). (Express Letter)
DOI:10.1143/JJAP.46.L399
Most Cited Articles 2010
36. Y. Kajikawa*, K. Abe, and S. Noda,
"Filling the gap between researchers studying different materials and different methods: a proposal of structured keywords,"
J. Inf. Sci. 32 (6), 511-524 (2006).
DOI:10.1177/0165551506067125
35. K. Kakehi, S. Noda*, S. Chiashi, and S. Maruyama,
"Supported Ni catalysts from nominal monolayer grow single-walled carbon nanotubes,"
Chem. Phys. Lett. 428 (4-6), 381-385 (2006).
DOI:10.1016/j.cplett.2006.07.039
34. S. Noda*, H. Sugime, T. Osawa, Y. Tsuji, S. Chiashi, Y. Murakami, and S. Maruyama,
"A simple combinatorial method to discover Co-Mo binary catalysts that grow vertically aligned single-walled carbon nanotubes,"
Carbon 44 (8), 1414-1419 (2006).
DOI:10.1016/j.carbon.2005.11.026
33. S. Inasawa*, M. Sugiyama, S. Noda, and Y. Yamaguchi,
"Spectroscopic study of laser-induced phase transition of gold nanoparticles on nanosecond time scales and longer,"
J. Phys. Chem. B 110 (7),3114-3119 (2006).
DOI:10.1021/jp057175l
32. S. Noda*, Y. Tsuji, A. Sugiyama, A. Kikitsu, F. Okada, and H. Komiyama,
"c-Axis oriented face-centered-tetragonal-FePt nanoparticle monolayer formed on a polycrystalline TiN seed layer,"
Jpn. J. Appl. Phys. 44 (11), 7957-7961 (2005).
DOI:10.1143/JJAP.44.7957
31. S. Noda*, Y. Tsuji, Y. Murakami, and S. Maruyama,
"Combinatorial method to prepare metal nanoparticles that catalyze the growth of single-walled carbon nanotubes,"
Appl. Phys. Lett. 86 (17), 173106-1-3 (2005).
DOI:10.1063/1.1920417
Selected for the May 2, 2005 issue of Virtual Journal of Nanoscale Science & Technology.
30. Y. Kajikawa* and S. Noda,
"Growth mode during initial stage of chemical vapor deposition,"
Appl. Surf. Sci. 245 (1-4), 281-289 (2005).
DOI:10.1016/j.apsusc.2004.10.021
29. H. Komiyama*, Y. Yamaguchi, and S. Noda,
"Structuring knowledge on nanomaterials processing,"
Chem. Eng. Sci. 59 (22-23), 5085-5090 (2004).
DOI:10.1016/j.ces.2004.09.025
28. S. Noda*, T. Tsumura, J. Fukuhara, T. Yoda, H. Komiyama, and Y. Shimogaki,
"Stranski-Krastanov growth of tungsten during chemical vapor deposition revealed by micro-Auger electron spectroscopy,"
Jpn. J. Appl. Phys. 43 (10), 6974-6977 (2004).
DOI:10.1143/JJAP.43.6974
27. S. Noda*, R. Hirai, H. Komiyama, and Y. Shimogaki,
"Selective silicidation of Co using silane or disilane for anti-oxidation barrier layer in Cu metallization,"
Jpn. J. Appl. Phys. 43 (9A), 6001-6007 (2004).
DOI:10.1143/JJAP.43.6001
26. Y. Kajikawa*, S. Noda, and H. Komiyama,
"A simple index to restrain abnormal protrusions in films fabricated using CVD under diffusion-limited conditions,"
Chem. Vap. Deposition 10 (4), 221- 228 (2004).
DOI:10.1002/cvde.200306285
25. Y. Kajikawa*, S. Noda, and H. Komiyama,
"Use of process indices for simplification of the description of vapor deposition systems,"
Mater. Sci. Eng. B 111 (2-3), 156-163 (2004).
DOI:10.1016/j.mseb.2004.04.013
24. Y. Kajikawa*, T. Tsumura, S. Noda, H. Komiyama, and Y. Shimogaki,
"Nucleation of W during chemical vapor deposition from WF6 and SiH4,"
Jpn. J. Appl. Phys. 43 (6B), 3945-3950 (2004).
DOI:10.1143/JJAP.43.3945
23. Y. Kajikawa*, T. Tsuchiya, S. Noda, and H. Komiyama,
"Incubation time during the CVD of Si onto SiO2 from silane,"
Chem. Vap. Deposition 10 (3), 128-133 (2004).
DOI:10.1002/cvde.200304165
22. M. Hu, S. Noda*, T. Okubo, and H. Komiyama,
"Wettability and crystalline orientation of Cu nanoislands on SiO2 with a Cr underlayer,"
Appl. Phys. A 79 (3), 625-628 (2004).
DOI:10.1007/s00339-004-2604-3
21. S. Noda*, K. Tanabe, T. Yahiro, T. Osawa, and H. Komiyama,
"Reaction of Si with HCl to form chlorosilanes: Time dependent nature and reaction model,"
151 (6), C399-C404 (2004).
DOI:10.1149/1.1737386
20. S. Noda*, Y. Kajikawa, and H. Komiyama,
"Combinatorial masked deposition: Simple method to control deposition flux and its spatial distribution,"
Appl. Surf. Sci. 225 (1-4), 372-379 (2004).
DOI:10.1016/j.apsusc.2003.10.027
19. S. Noda*, K. Tepsanongsuk, Y. Tsuji, Y. Kajikawa, Y. Ogawa, and H. Komiyama,
"Preferred orientation and film structure of TaN films deposited by reactive magnetron sputtering,"
J. Vac. Sci. Technol. A 22 (2), 332-338 (2004).
DOI:10.1116/1.1647593
18. T. Q. Li*, S. Noda*, F. Okada, and H. Komiyama,
"Effects of substrate heating and biasing on manostrcutural evolution of nonepitaxially growth TiN nanofilms,"
J. Vac. Sci. Technol. B 21 (6), 2512-2516 (2003).
DOI:10.1116/1.1621654
17. Y. Kajikawa*, S. Noda, and H. Komiyama,
"Comprehensive perspective on the mechanism of preferred orientation in reactive-sputter-deposited nitrides,"
J. Vac. Sci. Technol. A 21 (6), 1943-1954 (2003).
DOI:10.1116/1.1619414
16. T. Q. Li*, S. Noda*, H. Komiyama; T. Yamamoto, and Y. Ikuhara,
"Initial growth stage of nanoscaled TiN films: Formation of continuous amorphous layers and thickness-dependent crystal nucleation,"
J. Vac. Sci. Technol. A 21 (5), 1717-1723 (2003).
DOI:10.1116/1.1598975
15. M. Hu*, S. Noda*, T. Okubo, Y. Yamaguchi, and H. Komiyama,
"Structural and morphological control of nanosized Cu islands on SiO2 using a Ti underlayer,"
J. Appl. Phys. 94 (5), 3492- 3497 (2003).
DOI:10.1063/1.1597972
14. M. Hu*, S. Noda*, and H. Komiyama,
"Amorphous-to-crystalline transition during the early stages of thin film growth of Cr on SiO2,"
J. Appl. Phys. 93 (11), 9336- 9344 (2003).
DOI:10.1063/1.1571214
13. Y. Kajikawa*, S. Noda, and H. Komiyama,
"Mechanisms controlling preferred orientation of chemical vapor deposited polycrystalline films,"
Solid St. Phenomena 93, 411- 416 (2003).
DOI:10.4028/www.scientific.net/SSP.93.411
12. M. Hu*, S. Noda, and H. Komiyama,
"A new insight into the growth mode of metals on TiO2(110),"
Surf. Sci. 513 (3), 530-538 (2002).
DOI:10.1016/S0039-6028(02)01856-3
11. Y. Kajikawa*, S. Noda, and H. Komiyama,
"Preferred orientation of chemical vapor deposited polycrystalline silicon carbide films,"
Chem. Vap. Deposition 8 (3), 99-104 (2002).
DOI:10.1002/1521-3862(20020503)8:3<99::AID-CVDE99>3.0.CO;2-C
10. S. Noda*, Y. Kajikawa, and H. Komiyama,
"Cone structure formation by preferred growth of random nuclei in chemical vapor deposited epitaxial silicon films,"
Chem. Vap. Deposition 8 (3), 87-89 (2002).
DOI:10.1002/1521-3862(20020503)8:3<87::AID-CVDE87>3.0.CO;2-Q
9. M. Hu*, S. Noda, Y. Tsuji, T. Okubo, Y. Yamaguchi, and H. Komiyama,
"Effect of interfacial interactions on the initial growth of Cu on clean SiO2 and 3-mercaptopropyltrimethoxysilane-modified SiO2 substrates,"
J. Vac. Sci. Technol. A 20 (3), 589-596 (2002).
DOI:10.1116/1.1458941
8. T. Q. Li*, S. Noda, Y. Tsuji, T. Osawa, and H. Komiyama,
"Initial growth and texture formation during reactive magnetron sputtering of TiN on Si(111),"
J. Vac. Sci. Technol. A 20 (3), 583-588 (2002).
DOI:10.1116/1.1458944
7. Y. Kajikawa*, H. Ono, S. Noda, and H. Komiyama,
"Growth of trumpet-like protrusions during the CVD of silicon carbide films,"
Chem. Vap. Deposition 8 (2), 52-55 (2002).
DOI:10.1002/1521-3862(20020304)8:2<52::AID-CVDE52>3.0.CO;2-R
6. X.-D. Liu*, H. Funakubo, S. Noda, and H. Komiyama,
"Internal microstructure and formation mechanism of surface protrusions in Pb-Ti-Nb-O thin film prepared by MOCVD,"
Chem. Vap. Deposition 7 (6), 253-259 (2001).
DOI:10.1002/1521-3862(200111)7:6<253::AID-CVDE253>3.0.CO;2-1
5. M. Hu*, S. Noda, T. Okubo, Y. Yamaguchi, and H. Komiyama,
"Structure and morphology of self-assembled 3-mercaptopropyltrimethoxysilane layers on silicon oxide,"
Appl. Surf. Sci. 181 (3-4), 307-316 (2001).
DOI:10.1016/S0169-4332(01)00399-3
4. M. Yamamoto*, S. Ona, S. Noda, and M. Sadakata,
"NO reduction under the excess O2 condition by porous VYCOR catalyst,"
J. Chem. Eng. Jpn. 34 (6), 834-839, (2001).
J-Stage
3. X.-D. Liu*, H. Funakubo, S. Noda, and H. Komiyama,
"Influence of deposition temperature on the microstructure of Pb-Ti-Nb-O thin films by metallorganic chemical vapor deposition,"
J. Electrochem. Soc. 148 (3), C227-C230 (2001).
DOI:10.1149/1.1349880
2. S. Noda*, M. Nishioka, and M. Sadakata,
"Gas-phase hydroxyl radical emission in the thermal decomposition of lithium hydroxide,"
J. Phys. Chem. B 103 (11), 1954-1959 (1999).
DOI:10.1021/jp984238
1. S. Noda*, M. Nishioka, A. Harano, and M. Sadakata,
"Gas-phase hydroxyl radical generation by the surface reactions over basic metal oxides,"
J. Phys. Chem. B 102 (17), 3185-3191 (1998).
DOI:10.1021/jp9731314
Reviewed original papers (in Japanese)
4. H. Sasakura, S. Noda, and Y. Yamaguchi,
"Novel analytical method of nanoparticle dispersibility in polymer nanocomposites; TEM-CT and 3D topological analysis,"
J. Ceram. Soc. Jpn. 114 (1331), 638-642 (2006) (in Japanese).
J-STAGE:jcersj/114/1331/114_638/
3. A. Inaba, Y. Kondo, M. Kobayashi, H. Kita, N. Takahashi, S. Noda, S. Matsumoto, H. Morita, and H. Komiyama,
"Reduction of CO2 emission for the introduction of solar photovoltaic energy systems,"
Energy and Resources 16 (5), 532-537 (1995) (in Japanese).
2. A. Inaba, Y. Kondo, M. Kobayashi, H. Kita, N. Takahashi, S. Noda, S. Matsumoto, H. Morita, and H. Komiyama,
"Life cycle assessment for solar photovoltaic energy system,"
Energy and Resources 16 (5), 525-531 (1995) (in Japanese).
1. A. Inaba, Y. Kondo, M. Kobayashi, H. Kita, N. Takahashi, S. Noda, S. Matsumoto, H. Morita, and H. Komiyama,
"Life cycle inventory for solar photovoltaic power generation systems,"
Resources and Environment 4 (4), 321-34 (1995) (in Japanese).
International Conference Proceedings
13. K. Furuichi, Y. Shiratori, K. Sekiguchi, H. Sugime, and S. Noda,
"A 1-sec Implementation of CNT-Emitter Arrays on Glasses for BLUs,"
Digest of Technical Papers - Society for Information Display International Symposium, 40(Bk. 1), 139-141 (2009).
12. M. Hu, S. Noda, H. Komiyama,
"Nanostructural evolution in non-epitaxial growth of thin films,"
Materials Research Society Symposium Proceedings, 2006-961E, O05-04 (2007).
11. S. Noda,
"Structuring knowledge on materials technology: general understanding of phenomena occurring in materials and its practical applications,"
The Third International Conference on Nanotechnology (JAPAN NANO 2005), P3-15, Tokyo, Japan, Feb. 2005.
10. S. Noda and H. Komiyama,
"Nanostructural evolution by non-epitaxial growth,"
Proc. 10th Asian Pacific Confederation of Chemical Engineering, 4C-07, Kitakyushu, Japan, Oct. 2004.
9. Y. Tsuji, S. Noda, and H. Komiyama,
"Epitaxial lift-off technology for solar cell application,"
Proc. 10th Asian Pacific Confederation of Chemical Engineering, 3D-11, Kitakyushu, Japan, Oct. 2004.
8. K. Kakehi, S. Noda, and F. Okada,
"Phase transition from semiconductor to insulator observed in rare gas- and halogen-doped SiOx thin films,"
Proc. 10th Asian Pacific Confederation of Chemical Engineering, 3D-10, Kitakyushu, Japan, Oct. 2004.
7. Y. Shimogaki, M. Sugiyama, S. Noda, and H. Komiyama,
"Initial nucleation and growth in fabrication of metal thin films by chemical vapor deposition,"
Proc. 10th Asian Pacific Confederation of Chemical Engineering, 3P-08-051, Kitakyushu, Japan, Oct. 2004.
6. Y. Shimogaki, T. Iino, M. Sugiyama, T. Momose, Y. S. Kim, T. Tsumura, Y. Kajikawa, S. Noda, and H. Komiyama,
"The initial nucleation behavior during Al, Cu, W-CVD on barrier metal layers,"
Proceedings of Material Research Society 2004 Spring Meeting, F8.10, San Francisco, April 12-16, 2004.
5. R. Hirai, S. Noda, H. Komiyama, and Y. Shimogaki,
"Selective silicidation of cobalt using SiH4 and Si2H6 for Cu metallization,"
Proceedings of the Advanced Metallization Conference 2002 (AMC 2002), San Diego, October 1-3, 2002, Materials Research Society, Conf. Proc. ULSI XVIII, 427-431 (2003).
4. S. Noda, K. Hagiwara, O. Ichikawa, K. Tanabe, T. Yahiro, H. Ohkawa, T. Osawa, and H. Komiyama,
"Closed recycle CVD process for mass production of SOG-Si from MG-Si,"
Conf. Rec. IEEE Photovoltaic Specialists Conf. 2002, 29th, 308-311.
3. Y. Tsuji, S. Noda, M. Mizukami, and H. Komiyama,
"Epitaxial technology of Si/CoSi2/Si layers for solar cell application,"
Conf. Rec. IEEE Photovoltaic Specialists Conf. 2002, 29th, 289-292.
2. M. Hu, S. Noda, Y. Ogawa, Y. Tsuji, T. Okubo, Y. Yamaguchi, and H. Komiyama,
"Study of initial growth of Cu on SiO2 and 3-mercaptopropyltrimethoxysilane-coated SiO2,"
Proc. Electrochem. Soc. 2001-13 (Fundamental Gas-Phase and Surface Chemistry of Vapor-Phase Deposition II), 41-46 (2001).
1. K. Tepsanongsuk, S. Noda, Y. Tsuji, and H. Komiyama,
"The structure control of sputtered TaN films on SiO2 through the study of evolutionary selection growth,"
Proc. Adv. Metall. Conf. 2000, 409-412 (2000).
Reviews/ Commentaries
3. S. Noda
"Custom production and application of carbon nanotubes"
Kagaku Kogaku�½C74 (11)�½C629-631 (2010) (in Japanese).
2. S. Noda,
"Development of CNT production methods by the combinatorial methodology,"
NEW DIAMOND�½C89-24 (2)�½C32-33 (2008) (in Japanese).
1. S. Noda,
"Approach from chemical engineering to the synthesis of single-walled carbon nanotubes,"
Chemical Engineering, 51 (8)�½C32-37 (2006) (in Japanese).
Patents
25. S. Noda, T. Osawa, D.Y. Kim, E. Haba, and S. Ueda,
"Apparatus for producing nanocarbon material and method for producing nanocarbon material,"
PCT Int. Appl. (2011),
WO 2011/102433 A1, 20110825.
24. S. Noda, S. Morokuma, and T. Yamamoto,
"Silicon film and lithium secondary cell,"
PCT Int. Appl. (2011),
WO 2011/071154 A1, 20110616.
23. S. Noda, D.Y. Kim, T. Osawa, H. Sugime, K. Hasegawa, and E. Haba,
"Method and apparatus for simultaneously producing carbon nanotubes and hydrogen,"
PCT Int. Appl. (2011),
WO 2011/030821 A1, 20110317.
22. S. Noda and K. Furuichi,
"Chemical vapor deposition apparatus and chemical vapor deposition method,"
Jpn. Kokai Tokkyo Koho (2010), JP201132120, 20110217.
21. S. Noda and K. Furuichi,
"Planar light-emitting devices including carbon nanotube emitters,"
Jpn. Kokai Tokkyo Koho (2010), JP2010108723, 20100513.
20. S. Noda and K. Furuichi,
"Method for forming carbon nanotube,"
PCT Int. Appl. (2010), 31 pp.
WO 2010/050517 A1, 20100506.
19. S. Noda, K. Furuichi, Y. Shiratori, Y. Tsuji, and H. Sugime,
"Field emission device having slit structure and protruding carbon nanotube emitter,"
Jpn. Kokai Tokkyo Koho (2009), JP2009245672, 20091022.
18. S. Noda, H. Sugime, Y. Yamaguchi, T. Ohsawa, K. Kakei, K. Hasegawa, and D.Y. Kim,
"Carbon nanotube manufacturing method and carbon nanotube manufacturing apparatus.
PCT Int. Appl. (2009), 56 pp.
WO 2009/110591 A1, 20090911.
17. S. Noda and S. Takashima,
"Process for embedding metal and equipment for depositing metal in recesses,"
PCT Int. Appl. (2009), 35pp.
WO 2009/102056 A1, 20090820.
16. S. Noda, H. Sugime, Y. Yamaguchi,
"Catalytic CVD process for production of carbon nanotube,"
PCT Int. Appl. (2008), 45pp.
WO 2008/029927 A1, 20080313.
15. K. Jun, H. Sakamoto, S. Noda,
"Thin film preparation apparatus,"
Jpn. Kokai Tokkyo Koho (2007), JP2007191729, 20070802.
14. S. Noda,
"Magnetic recording media and process for producing the same,"
Jpn. Kokai Tokkyo Koho (2007), JP2007026558, 20070201.
13. S. Noda,
"Carbon nanotube device and process for producing the same,"
PCT Int. Appl. (2006), 30 pp.
WO 2006/011468 A1, 20060202.
12. S. Noda, S. Maruyama,
"Carbon nanotube device and process for producing the same,"
Jpn. Kokai Tokkyo Koho (2006), JP2006035379, 20060209.
11. H. Sakamoto, S. Noda,
"Apparatus and method for formation of thin films,"
Jpn. Kokai Tokkyo Koho (2005), 19 pp., JP2005240091, A2 20050908.
10. E. Suetomi, K. Fukazawa, Y. Shimogaki, M. Sugiyama, S. Noda,
"The simulation system or the simulation method which uses the hybrid reaction model,"
Jpn. Kokai Tokkyo Koho (2005), 13 pp., JP2005217276, A2 20050811.
9. S. Noda,
"Process for producing monocrystal thin film and monocrystal thin film device,"
PCT Int. Appl. (2005), 54 pp.
WO 2005/069356 A1, 20050728.
8. H. Sakamoto, S. Noda,
"Method and apparatus for vapor deposition of metal thin films,"
Jpn. Kokai Tokkyo Koho (2005), 35 pp., JP2005139476, A2 20050602.
7. S. Noda,
"Manufacture of nano-particle device,"
PCT Int. Appl. (2005), 44 pp.
WO 2005/022565 A1, 20050310.
6. Y. Tsuji, S. Noda,
"Conical microstructure and its fabrication,"
Jpn. Kokai Tokkyo Koho (2005), 19 pp., JP2005063798, A2 20050310.
5. H. Komiyama, Y. Yamaguchi, S. Noda,
"Material design supporting method and its system,"
Jpn. Kokai Tokkyo Koho (2003), JP2003-178102, A2 20030627.
4. H. Komiyama, S. Noda, and M. Iwama,
"Manufacture of crystal thin film having large grain size from amorphous film,"
Jpn. Kokai Tokkyo Koho (2003), 4 pp., JP2003-133231, A2 20030509.
3. H. Komiyama; S. Noda, and Y. Tsuji,
"Method for manufacturing objective film, objective film obtained by the method, and laminated structure,"
PCT Int. Appl. (2002), 36 pp. CODEN: PIXXD2
WO 2002/40751 A1, 20020523.
2. H. Komiyama, K. Okuyama, M. Matsukata, Y. Egashira, and S. Noda,
"Structure analysis system, analysis method, and data structure,"
Jpn. Kokai Tokkyo Koho (2001), 20 pp., JP2001-249946, A2 20010914.
1. S. Noda and M. Sadakata,
"Oxidation of waste gases by solid-gas-solid catalytic reaction,"
Jpn. Kokai Tokkyo Koho (2000), 6 pp., JP2000-237544, A2 20000905.